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Abstract

We develop an algorithm for the evolution of interfaces whose normal velocity is given by the normal derivative of a

solution to an interior Poisson equation with curvature-dependent boundary conditions. We improve upon existing

techniques and develop new finite difference, ghost fluid/level set methods to attain full second-order accuracy for

the first time in the context of a fully coupled, nonlinear moving boundary problem with geometric boundary condi-

tions (curvature). The algorithm is capable of describing complex morphologies, including pinchoff and merger of inter-

faces. Our new methods include a robust, high-order boundary condition-capturing Poisson solver tailored to the

interior problem, improved discretizations of the normal vector and curvature, a new technique for extending variables

beyond the zero level set, a new orthogonal velocity extension technique that is both faster and more accurate than tra-

ditional PDE-based approaches, and a new application of Gaussian filter technology ordinarily associated with image

processing. While our discussion focuses on two-dimensional problems, the techniques presented can be readily

extended to three dimensions. We apply our techniques to a model for tumor growth and present several 2D simula-

tions. Our algorithm is validated by comparison to an exact solution, by resolution studies, and by comparison to the

results of a spectrally accurate method boundary integral method (BIM). We go beyond morphologies that can be

described by the BIM and present accurate simulations of complex, evolving tumor morphologies that demonstrate

the repeated encapsulation of healthy tissue in the primary tumor domain – an effect seen in the growth of real tumors.
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1. Introduction

The algorithms developed herein are motivated by our interest in modeling tumor growth and the mor-

phological response of tumors to environmental stimuli and tissue inhomogeneity. Tumor growth is a fun-

damental scientific and societal problem. While much work has been done in the mathematics community
on tumor modeling (e.g., see the recent review [32]), the state-of-the-art in modeling and numerical simu-

lation lags behind the current understanding of the biophysical processes. The work presented in this paper

is a step towards closing this gap and can be viewed as a building block towards a sophisticated virtual

cancer simulator. In addition, the methods described in this paper have application beyond the tumor

growth context and can be applied to general systems of coupled interior Poisson problems on a moving

domain with geometric boundary conditions.

The tumor model we consider here was previously investigated by Cristini et al. [7]. This model is a

reformulation of several classical models by Adam and co-workers [2–5,7,27]. A continuum-level descrip-
tion of tumor growth is used, and a sharp interface separates the tumor and healthy tissue. The tumor tis-

sue is modeled as an incompressible fluid, and tissue elasticity is neglected. Cell-to-cell adhesive forces are

modeled by a surface tension at the tumor-healthy tissue interface. The cell velocity is determined by

Darcy�s law, and growth occurs due to pressure gradients induced by mitosis (cell proliferation). A single

nutrient (e.g., oxygen or glucose) is required for cell viability and mitosis. The nutrient diffuses through the

tissue and is consumed by the tumor cells. This can limit the overall growth through the formation of a

necrotic core (region of dead cells). Tumor cells die when the nutrient level drops below a critical level nec-

essary for cell viability. This model is appropriate for characterizing solid tumors of sufficient size growing
into soft tissue such as the brain. We note that discrete models such as cellular automata have been used to

simulate tumor growth and are particularly applicable when the tumor boundary is fractal-like or diffuse

[20].

Currently, we do not model a number of important biophysical processes, including angiogenesis (the

formation of new blood vessels), genetic mutations, different cell species, and more realistic tissue responses

(e.g., viscoelastic). These effects can be included in our framework. In fact, there is very recent work by

Zheng et al. [38] that uses an adaptive level set method to simulate tumor necrosis, angiogenesis, and tissue

invasion. Genetic effects can be incorporated by including different cell species and by varying the biophys-
ical parameters via a stochastic model. The different cell species can be included in this framework by intro-

ducing an interface for each species, which is straightforward in the level set approach taken in this paper.

In [7], Cristini et al. presented the first nonlinear simulations of this continuum model of tumor growth

using a spectrally accurate boundary integral method. However, the boundary integral method does not

allow for inhomogeneous microphysical parameters and is not well-suited to the complex morphological

changes inherent in tumor evolution, including the pinchoff and coalescence of tumor tissue and the devel-

opment and evolution of a necrotic core. The tumor model is a special case of a classical system of coupled

interior Poisson and Poisson-like problems on a moving domain with geometric boundary conditions. The
velocity of the domain boundary is determined from the normal derivatives of the solutions to the Poisson

equations. Therefore, we sought to use a robust, second-order accurate finite difference ghost fluid/level set

method. The methods described in this paper are formulated for the classical system and thus can be ap-

plied beyond the tumor growth context.

Ghost fluid and level set methods have been applied with great success in a wide variety of physical appli-

cations (e.g. see the texts [34,29]). We first applied standard level set [34,28,29], WENO [19,18], total

variation diminishing Runge–Kutta [17,16], and ghost fluid methods [14,9,21,12,6], as well as a standard

PDE-based velocity extension [37] to the tumor growth model. However, because the full moving boundary
problem is sensitive to variations in the curvature, the speed can become noisy when even small perturba-

tions in the level set function are present. For these equations, the dependence of the normal velocity upon

the derivative of the curvature requires a severe third-order CFL time step restriction [7]. Furthermore, we
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still obtained merely first-order to 1.6-order convergence, and the standard discretizations for the normal

vector and curvature were highly inaccurate near merging interfaces.

To obtain full second-order accuracy in space and time, we develop a new Poisson solver capable of cap-

turing geometric boundary conditions on a complicated interface. We develop geometry-aware discretiza-

tions of the normal vectors and curvature that automatically detect and cope with level set irregularity,
particularly during morphological changes. We also develop new gradient and velocity extension tech-

niques that take full advantage of the geometric information embedded in the level set function to obtain

greater accuracy and faster computational speed than techniques currently in use. As a way to remove the

high-order time step constraint, Gaussian filtering is applied to remove small, high frequency perturbations

before they pollute the numerical solution. This is computationally inexpensive, does not degrade the accu-

racy of the numerical solution, and allows a first-order time step restriction.

Our Poisson solver, an extension of the ghost fluid method found in [21,12,13], retains all the qualities

developed therein. In particular, we avoid the complication of solving on an irregular grid by solving on a
simpler rectangular grid. The solution satisfies the boundary condition at the precise location of the inter-

face, rather than at nearby nodes. The method is robust and allows a straightforward, dimension-by-dimen-

sion implementation, although a small consideration needs to be made for the interaction of spatial

dimensions in one case. We present numerical evidence that strongly suggests our algorithm yields sec-

ond-order accuracy, even when applied to the full moving boundary problem with geometric boundary

conditions (e.g., curvature). We note that Gibou and Fedkiw recently proposed an extension of the ghost

fluid method in [11] that attains fourth-order accuracy on a fixed domain and third-order accuracy for the

Stefan problem (on a moving boundary) without curvature-dependent boundary conditions (i.e., zero sur-
face tension).

The outline of this paper is as follows. In Section 2, we formulate the classical system of interior Poisson-

like problems on a moving boundary; our tumor growth model is a special case. Section 3 provides an outline

of our general method. In Section 4, we describe our new interior Poisson solver, our gradient discretization

and new gradient extension, our new velocity extension, our modifed normal vector and curvature discret-

izations, and our new application of Gaussian filter technology. In Section 5, we verify the second-order con-

vergence with geometric boundary conditions, compare our results to spectrally accurate results in [7], and

investigate the effects of the velocity filtering, the new velocity extension technique, and our modifications to
the normal vector and curvature algorithms. Lastly, in Section 6, we give numerical evidence for second-

order convergence in the presence of necrosis and present several simulations of tumor growth that showcase

the robustness of the algorithm through complex morphological changes. This work is a continuation of the

techniques developed in Paul Macklin�s M.S. thesis [22].
2. The equations for the interior problem

2.1. Interior equations

We wish to solve a system of Poisson-like problems in a moving domain X(t) whose boundary R(t)
evolves with a velocity that depends upon the gradients of these solutions. That is, we solve for a system

of functions p1,p2,. . .,pk on X [ R that satisfy
r2pi ¼ fiðp1; p2; . . . ; pi�1; pi; x; tÞ in X

pi ¼ giðj; x; tÞ on R

(
1 6 i 6 k ð1Þ
and determine the outward normal velocity of the interface by
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V jR ¼
Xk
i¼1

aiðrpi � nÞjR; ð2Þ
where n is the unit normal vector on R oriented outward from X, and each $pi is a one-sided ‘‘interior’’

gradient at R based on values on R and in X. In our formulation, each pi depends upon pi � 1,pi � 2,. . .,
allowing for a partial decoupling of the system, but this restriction could be removed.

As in [34,28–30], we capture the boundary R implicitly by introducing a level set function u defined on a

rectangular domain D � ðX [ RÞ such that
uðxÞ
< 0 if x 2 X;

¼ 0 if x 2 R;

> 0 else:

8><>: ð3Þ
In this framework, we call X the interior region, Xo ¼ D n ðR [ XÞ the exterior region, and R the interface

between the regions. (Let us denote by AnB the set subtraction B from A.) To update the interface position

R in time, we solve the additional Hamilton–Jacobi equation
ut þ eV jruj ¼ 0 ð4Þ

throughout D [34,29,30]. Here, eV is an extension of V beyond the interface. We further stipulate that u is a
signed distance function: |u(x)| = d(x,R). We ensure this property by reinitializing u at every time step

[34,29,35]. From the level set function, we can readily compute geometric quantities:
n ¼ ru
jruj ð5Þ
and
j ¼ r � ru
jruj

� �
: ð6Þ
2.2. Application: tumor growth

We will apply the techniques developed in this paper to a model of tumor growth, which is a reformu-

lation of several classical models found in [2–5,7,27]. Let X denote a two-dimensional tumor mass, let R be

its boundary, let XN denote the necrotic core of X (note that XN � X), and let us denote the boundary of XN

by RN. As stated earlier, we enclose X ¼ X [ R in a larger rectangular domainD, and we define Xo ¼ D n X.
Let c and p denote a nondimensionalized concentration and pressure, respectively (see [3,7,22] for the

model and nondimensionalization). The dimensionless parameters include G which is related to the rate
of mitosis (cell proliferation), and GN measures the rate of volume loss due to necrosis (cell degradation)

relative to the rate of mitosis. In addition, the parameter A measures the rate of apoptosis (‘‘pre-pro-

grammed’’ cell death), and N is the value of c necessary for cell viability. Note that the necrotic core XN

is the region where c < N.

From [7], the concentration satisfies
r2c ¼ c in X;

cjR ¼ 1;

c ¼ 1 outside R

8><>: ð7Þ
and the pressure satisfies
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r2p ¼
�Gðc� AÞ in X if c P N ;

GGN in X if c < N ;

�
pjR ¼ j

p ¼ 0 outside R:

8>>><>>>: ð8Þ
Note that the concentration is determined solely by the position of the interface R and can be solved inde-

pendently of the pressure. This allows the necrotic core to be determined prior to the pressure solve by the
region where c � N is negative.

The outward normal velocity is given by Darcy�s law
V jR ¼ �n � rp; ð9Þ

where $p is the interior pressure gradient in the region X.
3. Numerical solution: general technique

We begin by enclosing the interface within a larger, rectangular computational domain

D ¼ ½a; b� � ½c; d�. (We will postpone our discussion of how large [a,b] · [c,d] is for a later part of this pa-

per.) We then proceed via:

(1) Initialize a level set function u to represent the interface R while ensuring that there are sufficiently
many computational node points between R and the computational boundary.

(2) Check for proximity of the interface R to the computational boundary. If there is insufficient space

between R and oD, then extend x, y, and u. Reinitialize u.
(3) Calculate the normal vector n and the curvature j where required.

(4) Solve the Poisson problems for p1,. . .,pk.
(5) Calculate the gradients $pi inside and on R, and extend the components of the gradients beyond R into

Xo.

(6) Calculate the normal velocity V in a band about R according to (2). Extend the normal velocity orthog-
onally from the interface R, and filter high-frequency numerical noise from the extended speed.

(7) Update u according to (4).

(8) Repeat (2)–(7) for each step of the time discretization.
4. Discretizations

4.1. Interior Poisson solver

Our solution technique for the Poisson problem was first developed in [22] and is an extension of the

ghost fluid methods in [14,9,21] to higher-order accuracy. In this method, we solve a general interior prob-

lem for u (which can be either the nutrient concentration c or the pressure p) in a complex domain
r2u ¼ f ðu; xÞ in X;

u ¼ gðj; xÞ on R;

(
ð10Þ
by embedding the problem in the rectangular domain D and extending u as a constant c into Xo. Thus, we

solve the system
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r2u ¼ f ðu; xÞ in X;

u ¼ gðj; xÞ on R;

u ¼ c in Xo:

8><>: ð11Þ
The solution u can be assumed to be smooth within X up to R. We assume that R is defined by means of a

level set function u as described before. Also, we assume that g is a function that can be evaluated at all

node points near R.
Note that the equations governing the tumor nutrient concentration (7) and the pressure (11) can be

written in the above form, where
u ¼ c; f ðc; xÞ ¼ c; gðj; xÞ ¼ 1; c ¼ 1 ð12Þ

and
u ¼ p; f ðp; xÞ ¼
�Gðc� AÞ in XP;

GGN in XN;

�
gðj; xÞ ¼ j; c ¼ 0; ð13Þ
respectively. Note that in the presence of necrosis, the pressure has a discontinuous second derivative at the

boundary of the necrotic core.

The central idea of the discretization technique [9,21] begins with the standard centered difference for

uxx: if [xi � 1,xi + 1] lies entirely within X, then
uxx ¼
ui�1 � 2ui þ uiþ1

Dx2
þ OðDx2Þ: ð14Þ
However, if the interface intersects [xi � 1,xi + 1], then u is potentially discontinuous, and the finite difference

approximation in (14) is inaccurate. Supposing that the interface occurs between xi and xi + 1, ui + 1 is re-

placed in (14) with ûi + 1, a smooth extension of u from the inner domain to xi + 1 (see Fig. 1).
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Fig. 1. Ghost fluid method: extrapolation to ûi + 1.
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As stated above, the pressure has a discontinuous second derivative across the boundary of the necrotic

core. If left untreated (as is done here) this limits the overall accuracy of the scheme to second order. A

higher-order accurate treatment can be achieved by applying a ghost fluid discretization at the boundary

of the necrotic region as well as at the interface R.
In our approach, we make three principal approximations. We estimate the location of the interface be-

tween xi and xi + 1 by linear interpolation of u; this is known as subcell resolution [21,12,13]. We approx-

imate the value of the boundary condition at the interface by cubic interpolation of g near R. Lastly, we
extrapolate ûi + 1 from the boundary condition and multiple points within X using linear, quadratic, or

cubic extrapolation.

4.1.1. Classification of node points

For points contained in X, the solver proceeds by constructing an approximation to $2u at each point

(xi,yj) while considering which points of the 5-point stencil
fðxi; yjÞ; ðxi; yj�1Þ; ðxi�1; yjÞg
are contained in X, in Xo, and on R. The level set formulation of the interface makes this classification a

straightforward matter:
xi;j 2
X if ui;j < ��;

R if jui;jj 6 �;

Xo if ui;j > �;

8><>: ð15Þ
where � is introduced to account for finite machine precision. We take � = 2�mach, where
�mach ¼ maxf� > 0 : 1:0þ � ¼ 1:0g ð16Þ

in machine floating-point arithmetic. Note that because computer hardware can only represent finitely

many floating-point numbers, this set has a unique, nonzero maximum. On most modern, 32-bit machines,

this number is typically 2�53 � 1.11 e�16.

4.1.2. Discretizing the equation

We discretize (11) on the full rectangular domain although we are solving the interior problem. The rows

corresponding to the trivially solvable discretizations are included in the coefficient matrix because this pre-
serves the row (or column) ordering of the coefficient matrix, yielding a banded matrix that can be stored

efficiently in memory. We proceed by discretizing (11) at each node xi according to the classification of xi
and its neighbors by (15).

The discretization on R and in Xo is trivial:

(1) Case: xi 2 Xo

By (11), ui = c. To improve the conditioning number of the coefficient matrix, we shall use
�1

Dx2
ui ¼

�1

Dx2
c: ð17Þ
(2) Case: xi2R
In this case, ui = g(ji,xi). Again, we set
�1

Dx2
ui ¼

�1

Dx2
gðji; xiÞ: ð18Þ
to improve the conditioning number of the coefficient matrix.

When considering points in X, we must approximate $2u. Let us first consider the discretization of uxx.
We shall then approximate $2u dimension-by-dimension, as the discretization of uyy is identical except in
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one case where the two-dimensionality is important. We proceed by classifying the node points {(xi±1),xi}.

Consider the following cases:

(3) Case: xi 2 X

(a) Case: xi � 1 2 X and xi + 12X
In this case, the entire stencil is contained in the inner region, so we can use the standard second-order

approximation to uxx = f:
1

Dx2
ðui�1 � 2ui þ uiþ1Þ ¼ f ðui; xiÞ: ð19Þ
(b) Case: xi � 1 2 X and xi + 1 2 (R [ Xo)
In this case, the interface is located between xi and xi + 1 on the right-hand side of the stencil. Let us

denote this location by xR. We denote
xR ¼ xi þ hDx; 0 < h 6 1; ð20Þ
where h is determined by interpolating the level set function u. This provides us with the subcell resolution

introduced earlier. Notice that if h ! 0, then xi 2 R, and we are in case 2.

Next, let us define S ¼ fxi�1; xi; xiþ1; xiþ2g. We evaluate g at the points in S and the corresponding
{ji � 1,ji,ji + 1,ji + 2}, apply cubic interpolation, and evaluate the interpolation at xR. Let us denote the va-

lue of the interpolation by gR.

We extend u from the interior region to xi + 1 and obtain a ‘‘ghost value’’ ûi + 1. We determine ûi + 1 by

extrapolating from the neighboring values of u contained in X, solving algebraically for ûi + 1, and substi-

tuting the expression for ûi + 1 in
1

Dx2
ðui�1 � 2ui þ ûiþ1Þ ¼ f ðui; xiÞ: ð21Þ
For completeness, we give linear, quadratic, and cubic extrapolations in Appendix A. Similar extrapola-

tions are also given in [11]. We note that because all the points in our extrapolations are at least Dx apart,

the case, where h ! 0, if it should occur, poses no difficulty for our discretization.

(c) Case: xi � 1 2 (R [ Xo) and xi + 1 2 X
In this case, the interface is located between xi � 1 and xi. The discretization is completely analogous to

that in the previous case.
(d) Case: xi � 1 2 (R [ Xo) and xi + 1 2 (R [ Xo)

In this case, the interface intersects the stencil not once but twice; this requires more careful considera-

tion as a series of subcases:

(i) Subcase: xi � 1 2 R and xi + 1 2 R
We can construct an approximation to uxx by
1

Dx2
ðgðji�1; xi�1Þ � 2ui þ gðjiþ1; xiþ1ÞÞ: ð22Þ
(ii) Subcase: xi � 1 2 R and xi + 1 2 Xo

In this subcase, we can proceed as in Case 3b with two minor modifications: we replace ui � 1 by

g(ji � 1,xi � 1) in the extrapolation for ûi + 1, and the extrapolation must be linear. (We do not allow for

extrapolations using both ui and gR because such extrapolations become unstable as h ! 0.)

(iii) Subcase: xi � 1 2 Xo and xi + 1 2 R
This case is completely analogous to the previous subcase.

(iv) Subcase: xi � 1 2 Xo and xi + 1 2 Xo
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The interface occurs on both the right- and left-hand sides of the stencil, and there is insufficient data to

extrapolate both ûi � 1 and ûi + 1. (We avoid extrapolations using both ui and u(xi + hDx), as these become

unstable as h ! 0. Similarly, we avoid extrapolations using ui and u(xi � 1 + h Dx), as these become unstable

as h ! 1.) In this case, we take uxx = 0 and consider the y-direction. If the same occurs so that we take

uyy = 0, we say that the discretization fails to resolve R around (xi,yj) and take the point to fall in Xo. Hence,
we set
Fig. 2.

figure,
�1

Dx2
ui ¼

�1

Dx2
c: ð23Þ
Notice that we cannot make such a distinction without considering the two-dimensionality of the prob-

lem (see Fig. 2). We note that in [13,11] constant extrapolations are also allowed and so in those works it
was unnecessary to consider the two-dimensionality.

When we use this technique with cubic extrapolation, which shall denote it by Poisson3. Likewise, quad-

ratic and linear extrapolation for û are Poisson2 and Poisson1, respectively. When using Poisson3, if there

are not sufficiently many interior node points for cubic extrapolation to û, we use Poisson2 or Poisson1 in

that instance. The same applies to Poisson2. In our work, we solved the resulting linear systems with the

stabilized biconjugate gradient method (BiCG-Stab(2)) [8] with a compact banded matrix storage scheme

[31].

4.2. Gradients

The normal velocity in (2) requires $pi on R for each i. For our method, we must also calculate the gra-

dients in X. Let u be a function whose gradient we wish to calculate, and consider ux. For interior points

xi 2 X where u 6 �, we use the five-point stencil
uxðxiÞ ¼
1

12Dx
ðui�2 � 8ui�1 þ 8uiþ1 � uiþ2Þ þ OðDx4Þ; ð24Þ
when fxi; xi�1; xi�2g � X ¼ X [ R; when only fxi; xi�1g � X, we use the standard second-order centered dif-

ference. If one of xi±1 2 Xo, we construct a polynomial interpolation of u in X using two-to-four nearby

points in X, differentiate the interpolation, and evaluate at xi. In this way, we can calculate ux to second

order or better accuracy at all points in X and on R. We obtain the partial derivative uy similarly.
Impact of two-dimensionality on the Poisson solver. In the left figure, the interface R is unresolved near (xi,yj). In the right

uyy = 0 but the interface is still resolved.
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4.3. Extensions

Since we solve the advection Eq. (4), we require an extended normal velocity in a band surrounding R.
Because the Poisson solutions pi only have meaningful gradients (in the context of the interior problem) on

X, the first step of our extension procedure is to extend the individual components of the gradients $pi be-
yond R into Xo. Once this is done, we can evaluate (2) at any point near R.

To help maintain the accuracy of the level set u, we then use a velocity extension technique that satisfies

the orthogonality criterion $V Æ n = 0, which helps preserve the spacing of the level set contours. We note

that our orthogonal extension is a new technique based upon bilinear interpolation.

Once we have orthogonally extended the velocity, we apply a Gaussian filter in a narrow band about the

interface; this removes high frequency noise from the speed function that would otherwise perturb the inter-

face and destabilize the calculation (see Section 4.4). Because the filter only smooths the speed closest to the

interface, we must extend the smoothed velocity one final time. We found this approach works best among
the various combinations of extension and filtering available.

4.3.1. Gradient extension

As the gradient algorithm only defines the gradients where u 6 �, we must extend to a band of nodes

where u > �. For stability, our technique must preserve information flow in an outward direction from

the interface. The method we describe can be used to extend any scalar function f defined on R and in

X, and we apply it to the components of the $pi individually.
We extend f to a point x 2 Xo by one-dimensional, grid-aligned extrapolation from points where f has

either been previously extended or was originally defined (e.g., in X). We choose the points used in the

extrapolation according to whether the normal vector n = (n1,n2) at x is mostly horizontal (|n1| � |n2| > �
as at point a in Fig. 3), mostly vertical (|n2| � |n1| > � as at point c in Fig. 3), or mostly diagonal

(in1| � |n2i 6 � as at point b in Fig. 3). This allows the use of high-order extrapolation without the complex-

ity of multidimensional extrapolation; in our work, we used cubic extrapolation (see Fig. 3).

To preserve information flow in the outward direction from the interface, we tag the points requiring

extension (larger circles in Fig. 3), and among those points, we choose the point closest to R which has

not yet been updated (open circles); notice that by the level set formulation, this point can be determined
by choosing the remaining point with the smallest positive value of u.

In our simulations, we applied this technique to each component of the $pi within a band of width 5Dx.

4.3.2. Identifying the closest point on the interface

Ordinarily, it can be an expensive operation to determine the closest point x1 on the interface R to a gi-

ven point x0 [1,34,29]. However, we can use the information afforded by the level set function u to make

this a simple, efficient operation; no search is required. At any point x0, the outward normal vector n(x0)

points away from the interface, and |u(x0)| gives the distance to the interface. Therefore, the vector
Wðx0Þ ¼ �juðx0Þjnðx0Þ ¼ �un ð25Þ

points towards the closest point on R and has length equal to the distance from R. The point
x1 ¼ x0 þW ð26Þ

explicitly gives the closest point to x0 on R to second order (see Fig. 4).
4.3.3. Orthogonal velocity extension

Once we have a velocity defined in a band about the interface R, we apply an extension routine to ensure

that reV � n ¼ 0. We developed an extension based on bilinear interpolation of the velocity near the inter-

face that proved to be more accurate and less computationally expensive than PDE-based techniques (e.g.,



Fig. 4. Finding the closest point on the interface. W = �u(x0) n(x0).

x

y

Σ

a

b

c

Fig. 3. Gradient extension. We extend a scalar function beyond X[R by one-dimensional, grid-aligned extrapolation. The points used

in the extrapolation are chosen according to the direction of the normal vector. We preserve outward information flow by choosing the

next point for extension according to the value of the level set function at the remaining points (open circles).
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that given in [37]). The vectorW defined in (25) suggests the new extension technique: if we wish to extend V

to x0, we define W as in (25) and
x1 ¼ x0 þW ð27Þ

to be the closest point to x0 on the interface. Next, we locate (xI,yJ) such that x1 is contained in the box

[xI,xI + 1 · [yJ,yJ + 1 and calculate V(x1) with bilinear interpolation of V at the corners of the box (see

Fig. 4). Lastly, we define eV ðx0Þ ¼ V ðx1Þ. Notice that as eV is constant along W, which is parallel to � n

at all extended points,
oeV
on

	 0: ð28Þ
This approach differs from the discrete, fast marching velocity extension given in [1] in several ways. First,

the fast marching extension technique extends the velocity outward from the interface while simultaneously
updating the level set function; ours uses an already-updated level set function to aid in the extension proc-

ess. We use the level set function to readily locate the closest position on the interface, while the fast march-

ing technique depends on explicitly reconstructing the zero level set as piecewise linear curves and

considering multiple cases. Also, while the fast marching method depends upon solving a discretized

PDE at every point of extension, ours depends upon a simpler interpolation of previously known values

in a way similar to [26].

4.4. Velocity filtering

Because the physical problem is sensitive to variations in the curvature, the speed can become noisy when

even small perturbations in the level set function are present. In addition, grid effects such as mesh-induced

anisotropies can act as sources of numerical perturbations. In the boundary integral context [7], it was

shown that for these equations, the normal velocity depends upon the derivative of the curvature (i.e.,

V 
 HðjsÞ, where H is the Hilbert transform and s is arclength). It can be shown that such velocity fields

damp high frequency perturbations dk at the rate � |k|3, where k is the wave number. Thus, perturbations

evolve according to dk 
 e�jkj3t at large k. From this consideration, the high frequency perturbations in the
speed and interface position should be damped away, provided a CFL restriction is satisfied. The CFL

restriction for an explicit boundary integral method is Dt 
 Ds3. An analysis of our ghost fluid/level set

method reveals that this time step restriction also applies, with Ds replaced by Dx. This severe time step

restriction can be overcome in a number of ways. For example, in [7], a non-stiff, time integration scheme

using a discretization in which the leading order term (term with the largest number of spatial derivatives) is

integrated explicitly. This effectively removes the third-order constraint, leaving only a standard first-order

CFL time step restriction. The application of such an implicit time integration scheme in the level set con-

text is not straightforward. We are currently working to develop such a scheme.
Another way to remove the high-order time step constraint is to use numerical diffusion to remove small,

high frequency perturbations before they pollute the numerical solution. This has the advantage that it is

computationally inexpensive, and if done carefully, it does not degrade the accuracy of the numerical solu-

tion. We find that adapting a Gaussian filter from image processing applications [15] to smooth the normal

velocity within a prescribed band about the interface provides an efficient means of controlling the noise

without affecting the accuracy. In addition, the Gaussian filtering removes grid anisotropies as a side

benefit.

In one spatial dimension, a Gaussian filter is applied to a function f by
f̂ I ¼
1

r
ffiffiffiffiffiffi
2p

p
X
i

fI�i exp �ðiDxÞ2

2r2

 !
Dx; ð29Þ
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where r is the standard deviation of the filter. Typically, r = MDx for some integer M. For |iDx| P 3r, the
exponential function in the convolution has a very small value (less than approximately 0.0111); conse-

quently, we can truncate the sum above to
f̂ I ¼
1

S
1

M
ffiffiffiffiffiffi
2p

p
X3M

i¼�3M

fI�i exp � 1

2

i
M

� �2
 !

; ð30Þ
where S is the value of the sum for f ” 1.

To smooth a two-dimensional data array, we use (30) first in the x-direction, and then again in the y-

direction. In our calculations, we found that the necessary value of r depends upon the spatial resolution
but decreases with refinement. Because the filter requires that f be defined within a distance of 3r, we only
apply the filter to a narrow band around R. In our simulations, we used a narrow band of width 3Dx. As

will be shown later, this technique yields accurate results using only a first-order CFL time step restriction.

4.5. Level set reinitialization and advection

As in [35], we reinitialize u to be a signed distance function by solving
us � signðu0Þð1� jrujÞ ¼ 0; ð31Þ

where u0 is the level set function prior to reinitialization and s is pseudo-time. We discretize the temporal

derivative with the third-order total variation diminishing Runge–Kutta method (TVD-RK), and we
approximatesign(u0)|$u| with either the third-order or the fifth-order WENO scheme [19,18]. We discretize

the sign function according to
signdðuÞ ¼ 2 H dðuÞ �
1

2

� �
; ð32Þ
where
H dðuÞ ¼
0 if u < �d;
1
2
1þ u

2d þ 1
p sin

pu
d

� �� �
if juj 6 d;

1 if u > d

8><>: ð33Þ
and d is a small number [36]. In our calculations, we took d = Dx.
In our numerical implementation of the level set Eq. (4), we discretize V|$u| with the third-order or fifth-

order WENO method. We approximate the temporal derivative with the third-order total variation dimin-
ishing Runge–Kuta (TVD-RK) method [17,16], and we use the CFL condition
Dt 6
Dx

4 max jV j : ð34Þ
4.6. Normal vectors and curvature

The standard, second-order discretization of the normal vector n uses centered differences for ux and uy

and normalizes the result. For curvature, the standard second-order method is to calculate each partial

derivative in
j ¼ r � ru
jruj ¼

uxxu
2
y � 2uxuyuxy þ uyyu

2
x

ðu2 þ u2Þ
3
2

ð35Þ

x y
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using second order, centered differences. Note that this uses a 9-point stencil, and we discretize uxy as in [6]

by
Fig. 5.

equidi

work w

section

u.
uxyðxi; yjÞ �
1

4DxDy
ðuiþ1;jþ1 � ui�1;jþ1 � uiþ1;j�1 þ ui�1;j�1Þ: ð36Þ
However, there are cases where these normal vector and curvature discretizations are inaccurate. If two

interfaces approach one another, a ‘‘ridge’’ forms between them where the derivatives of u are discontin-

uous. Discretization across this ridge will cause large errors in the normal vector and curvature for an exact

(i.e., unperturbed, error-free) level set (see Fig. 5).
Because such ridges tend to introduce error into the surrounding level set function during reinitialization

and advection level set operations, the standard discretizations of curvature and the normal vectors are also

erratic in the nodes near the ridge. Because our extension techniques require that the normal vectors point

away from the interface, and as the boundary conditions of the Poisson problems depend on the curvature,

it is critical that we develop a technique to detect these situations and discretize accordingly. In our ap-

proach, we first detect these ‘‘ridges’’ and any other irregularities in the level set function, create a field

of direction vectors near the ridges to assist in determining one-sided discretizations, and finally discretize

the normal vectors and curvature.

4.6.1. Detecting ‘‘Ridges’’ in the level set

Recall that for a signed distance function u, |$u| � 1. Thus, a simple technique to detect the points on

and near a ridge is to compute v = $u using centered second-order differences, and then to define a ‘‘normal

quality function’’ Q(v) according to
QðvÞ ¼ j1� jvjj: ð37Þ
Effect of level set irregularity on j and n. In the left figure, two interfaces are close together. The middle curve shows the points

stant from both interfaces, and the level set function is irregular along this curve. The standard techniques for calculating j and n

ell at x0 (where the derivatives of u are continuous), whereas they break down numerically at x1. The right figure shows a cross-

through x1 of the level set function; the ‘‘peak’’ in the middle is equidistant from the two interfaces and a point of irregularity in
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We set Qi,j = Q($u(xi,yj)). If Qi,j P g for some fixed 0 < g < 1, then the point (xi,yj) is on or near a ridge. In

our testing, we found that g = .1 reliably detects the points on and near the ridges with few false positives.

4.6.2. Creating a direction vector field

We next introduce a direction field D(x,y) to assist in determining whether two neighboring points are on
the same side of a ridge. We require that D(xi,yj) points away from a ridge if QP g at (xi,yj) or any one of

its eight neighbors in the Cartesian grid, in which case D(xi,yj) points towards one of the eight neighboring

points. Otherwise, D = 0. If D 6¼0, we take it to be among the set
V ¼ fð0;�1Þ; ð0; 1Þ; ð�1; 0Þ; ð�1;�1Þ; ð�1; 1Þ; ð1; 0Þ; ð1;�1Þ; ð1; 1Þg: ð38Þ

For a function f at (xi,yj), we define the D-difference of $f component-wise by:
oxf ¼

fi;j�fi�1;j

Dx if Dx ¼ �1;
fiþ1;j�fi;j

Dx if Dx ¼ 1;
fiþ1;j�fi�1;j

2Dx if Dx ¼ 0;

8>><>>: ð39Þ
where (Dx,Dy) = D(xi,yj); oyf is defined similarly.

We determine D component-wise according to the value of Q at (xi,yj) and its eight neighbors. For the x-

direction,
Dx ¼

�1 if Qi�1;j < g and Qiþ1;j P g;

1 if Qi�1;j P g and Qiþ1;j < g;

0 if Qi�1;j < g and Qi;j < g and Qiþ1;j < g;

0 if Qi�1;j P g and Qi;j P g and Qiþ1;j P g;

undetermined otherwise:

8>>>>>><>>>>>>:
ð40Þ
We determine Dy similarly. We shall denote D(xi,yj) by Di,j. If Dx or Dy is undetermined, then we set D 0

equal to the element in V most parallel to $u (where we again use centered differences). We set D1 and

D2 to be perpendicular to D 0, and we define v1 and v2 to be the D1- and D2-differences of $u, respectively.
If Q(v1) < Q(v2) + l, then we choose Di,j = D1; otherwise, Di,j = D2. It is desirable to choose l6¼0 to give the

direction field D a small bias towards one side for points resting exactly on a ridge, as Q(v1) � Q(v2) in such

cases. In our testing, we found l ¼ 1
8
g works well.

Using these direction vectors, we can readily determine if two adjacent points are on the same side of a

ridge or other level set irregularity. Consider, for example, Di � 1,j and Di,j. If the dot product

Di � 1,j Æ Di,j > 0 or Di � 1,j = 0, then we say that (xi � 1,yj) and (xi,yj) are on the same side of any and all

ridges and level set irregularities.
4.6.3. Discretizing the normal vector

To discretize n at (xi,yj), we discretize the x-component of n as in Table 1. If we use a left-based stencil,

we use a stencil based of u on
n
ðxi�4; yjÞ; ðxi�3; yjÞ; ðxi�2; yjÞ; ðxi�1; yjÞ; ðxi; yjÞ

o
: ð41Þ
Let K be the number of points adjacent to and left of (xi,yj) for which all the points are on the same side of

all the ridges; that is, let
K ¼ maxfk : D �D > 0 or jD j ¼ 0 for all 1 6 ‘ 6 kg: ð42Þ
i�‘;j i;j i�‘;j



Table 1

Discretization of the x-component of n based on the direction vectors

Case Discretization of x-component of n

(Di � 1,j Æ Di,j > 0 or |Di � 1,j| = 0) and Di + 1,j Æ Di,j 6 0 Use a left-based stencil for ux

Di � 1,j Æ Di,j 6 0 and (Di + 1,j Æ Di,j > 0or |Di + 1,j| = 0) Use a right-based stencil for ux

(Di � 1,j Æ Di,j > 0 or |Di � 1,j| = 0) and (Di + 1,j Æ Di,j > 0 or |Di + 1,j| = 0) Use centered difference for ux

Di � 1,j Æ Di,j 6 0 and Di + 1,j Æ Di,j 6 0 Use centered difference for ux
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If K > 5, set K = 5. Then for the left stencil, we approximate ux using the K-point difference of u at

fðxi�‘; yjÞg
K
‘¼0. A right-based stencil for ux can be defined similarly, and the y-component is discretized anal-

ogously. The resulting vector is then normalized.

4.6.4. Discretizing the curvature

Recall that the standard curvature discretization involves the nine points in the square

[xi � 1,xi + 1] · [yj � 1,yj + 1]. If each Qk,‘ < g for i � 1 6 k 6 i + 1 and j � 1 6 ‘ 6 j + 1, we use the standard

curvature discretization. If any Q P g for one of these nine points but Q < g on
P ¼ ðxi�1; yjÞ [ ðxi; yj�1Þ [ ðxi; yjÞ; ð43Þ
then we use the alternate discretization of j via
j ¼ r � n; ð44Þ

where we use second-order centered differences for oxnx and oyny.

If QP g on any point in P, we have found that no one-sided difference can stably calculate j. In such a

case, we apply an extension of the previously defined j values in a manner similar to the components of the
pressure gradient as described in Section 4.2. The only difference is that rather than fitting a higher-order

(up to cubic) polynomial through the interpolated points and extrapolating, we fit a least-squares line

through those data points. In our testing, we found that this gives much more stable results. Because the

algorithm is one-sided, we apply it twice: once for the undefined curvature values outside R, and once

for the undefined curvature values inside R.

4.7. The narrow band/local level set technique and the size of the computational domain

Following [25,30], we update u within a distance R of the interface. Given an initialized level set function

u, the points which fall within that distance are
fx : juðxÞj 6 Rþ �g ð45Þ

for some small �. This set is referred to as a ‘‘narrow band’’ about R, R is the width of the band, and the

technique is known as the ‘‘narrow band’’ (or ‘‘local’’) level set method. The value of R is determined by the
numerical implementation; we begin this determination by considering the smoothed normal velocity.

We require a smoothed normal velocity within three nodes of the interface. Thus, RP 3Dx. If r is the

standard deviation of the Gaussian filter, then the outermost of these smoothed points requires that eV be

defined within a rectangle that extends 3r in all four mesh directions. The farthest node point within this

rectangle is at a distance of 3
ffiffiffi
2

p
r, so R P 3Dxþ 3r

ffiffiffi
2

p
.

To extend the velocity to the outermost of these points, we require a valid normal vector. As we obtain

the normal vector with centered difference of u, this requires one-to-two additional node points. Thus,

R P 3Dxþ 3
ffiffiffi
2

p
rþ 2Dx. Lastly, we often multiply R by a safety factor because the interface tends to
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change position between intermediate steps of the TVD-RK method. In our calculations, we chose a safety

factor of 1.25. Thus, our band size is
Table

Filterin

Dx

0.16

0.08

0.04
R ¼ 1:25ð5Dxþ 3
ffiffiffi
2

p
rÞ ¼ R ¼ 1:25ð5þ 3M

ffiffiffi
2

p
ÞDx; ð46Þ
where we have used r = MDx.
The size of the band for the narrow band level set method determines the size of the computational do-

main D: it must be large enough to contain the contour {x:u(x) 6 R + �}. We typically allow three-to-four
additional nodes of buffer between the edge of the computational domain and this contour. Thus, whenever
juðxÞj > Rþ 3Dx; ð47Þ

for any x 2 oD, we must extend the computational domain. We therefore modify the width R of the narrow

band to include this distance:
R ¼ 1:25ð5Dxþ 3
ffiffiffi
2

p
rþ 3DxÞ ¼ R ¼ 1:25ð8þ 3M

ffiffiffi
2

p
ÞDx: ð48Þ
5. Convergence and testing results

5.1. Convergence of the full method: exact circular solution

We tested our algorithm on the full system (7)–(9) with A = 0.5, G = 20 and N = 0 (i.e., no necrosis).

Note that GN is not used in the absence of necrosis. The initial interface R is a circle of radius 2.0 centered

at the origin. According to [7], if R(t) denotes the radius of R at time t, the exact solution of this problem is
given by solving
R0ðtÞ ¼ �AG
R
2
þ G

I1ðRÞ
I0ðRÞ

; Rð0Þ ¼ 2: ð49Þ
The level set function u at time t is given by
uðr; tÞ ¼ rðx; yÞ � RðtÞ; ð50Þ

where rðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. To test the convergence, we measured the maximum absolute error at the com-

mon mesh points within the band B ¼ fðx; yÞ : jrðx; yÞ � RðtÞj < 0:5g
‘band1 ðDxÞ ¼ maxfjuDxðxi; yj; tÞ � uactualðxi; yj; tÞj : ðxi; yjÞ 2 Bg ð51Þ
at t = 0.05 to t = 0.25 in 0.05 increments. We tested with Dx = Dy = 0.16, Dx = Dy = .08, and D
x = Dy = 0.04. In all these calculations, we used linear interpolation of u for the subcell resolution in the

various Poisson solvers. We calculated curvature within a band of width 3 Dx of R, we set g = 0.1 for

the normal vector and curvature algorithms, and we chose r large enough to maintain the expected circular

symmetry and convergence at every time step. The values of r used are given in Table 2. Notice that r de-

creases with refinement of the computational mesh, so there is no lower limit on the feature size that can be
2

g parameter r used for each spatial resolution

r

2Dx = 0.32

3Dx = 0.24

4Dx = 0.16
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resolved by mesh refinement. All calculations used our new bilinear velocity extension technique. We define

the overall convergence rate at a given time t to be
Table

Full co

Time

0.05

0.10

0.15

0.20

0.25

Table

Full co

Time

0.05

0.10

0.15

0.20

0.25

Table

Full co

Time

0.05

0.10

0.15

0.20

0.25

0.50

0.70
convergence rate ¼
log

‘band1 ðDx¼:16Þ
‘band1 ðDx¼:04Þ

� �
log 4

: ð52Þ
We tested all combinations of WENO and Poisson orders and determined that WENO5 with Poisson2 is

the best combination of algorithms to yield full second-order accuracy. The convergence results for

WENO5-Poisson2 are given in Table 3. Furthermore, we found that using Poisson1 yielded 1.6-order con-

vergence with significantly larger errors. See Table 4 for a characteristic example with WENO5-Poisson1

and bilinear velocity extension. Similar results have been obtained for simulations including necrotic effects

(see Section 6.1).

5.2. Convergence of the full method for complex morphology and comparison to boundary integral results

Consider the problem (7)–(9) with A = 0.5, G = 20 and N = 0 (i.e., no necrosis). We solve with Dx =

Dy = 0.08, g = 0.1, WENO5, and Poisson2. The initial shape is given by
RðsÞ ¼ ð2þ 0:2 cosð2sÞ; 2þ 0:2 sinð2sÞÞ; 0 6 s 6 2p: ð53Þ
3

nvergence results for WENO5, Poisson2, bilinear velocity extension

Dx = .16 Dx = 0.08 Dx = 0.04 Order

0.005691 0.001447 3.634e�4 1.98

0.01111 0.002765 7.424e�4 1.95

0.01572 0.003869 9.839e�4 2.00

0.01963 0.004942 0.001259 1.98

0.02405 0.005774 0.001467 2.02

4

nvergence results for WENO5, Poisson1, bilinear velocity extension

Dx = .16 Dx = .08 Dx = .04 Order

0.01520 0.004157 0.001535 1.65

0.02650 0.008049 0.002896 1.60

0.03739 0.01111 0.004055 1.60

0.04663 0.01372 0.005074 1.60

0.05528 0.01733 0.006007 1.60

5

nvergence results for non-necrotic, complex morphology

‘band1 ðDx; 2DxÞ ‘band1 ðDx; 1
2
DxÞ Order

0.005650 0.001333 2.08

0.009698 0.002453 1.98

0.01339 0.003473 1.97

0.01607 0.004014 2.00

0.1850 0.004878 1.92

0.03282 0.007068 2.22

0.03417 0.009704 1.82
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Fig. 6. Comparison of computed solutions. We compare the WENO5-Poisson2 (dashed curves) and boundary integral (solid curves)

solutions from t = 0.0 to t = 2.50 in 0.5 increments.
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There is no analytical solution for this case. Thus, to test convergence, we compare the solutions at different

resolutions. This case has been investigated previously using boundary integral methods in [7]; we also com-

pare our results to these.

In Table 5, the differences between the solutions at different mesh refinements in maximum norm and the

associated orders of convergence are shown at various times. The differences are defined by
‘band1 ðDx1;Dx2Þ ¼ maxfjuDx1ðxi; yj; tÞ � uDx2ðxi; yj; tÞj : ðxi; yjÞ 2 Bg; ð54Þ
where the band B consists of the set of common mesh points within a distance of 0.5 of the interface. The

order of convergence is given by
convergence rate ¼ 1

log 2
log

‘band1 Dx; 2Dx

‘band1 Dx; 1
2
Dx

 !
: ð55Þ
The results in Table 5 clearly demonstrate that the overall solution is second-order accurate.

Next, we compare our simulation to the boundary integral result from [7]. In [7], it was shown that this
tumor undergoes a morphological instability, and the evolving interface was accurately simulated using a

spectrally accurate boundary integral method.

In Fig. 6, we compare our results (dashed curves) to the spectrally accurate results (solid curve) from [7].

This is an especially difficult test due to the morphological instability which makes the solution very sen-

sitive to numerical errors. There is excellent agreement between the results. Shortly after the final time

(t = 2.531) shown in Fig. 6, the boundary integral method breaks down as the tumor boundary self-inter-

sects, resulting in the capture of healthy tissue within the tumor domain.

In Fig. 7, we continue our solution. As the tumor grows, healthy tissue is captured by the tumor multiple
times as morphological stability occurs. It is well-known that healthy tissue often mixes with tumor tissue,

especially near the tumor/healthy tissue boundary [24]. The collapse of tumors encapsulating healthy tissue

has also been observed (S. Ramakrishnan, private communication [33]). In our simple model, these features

are reflected through the multiple tumor boundary reconnections.
5.3. Impact of speed filtering

We now demonstrate the necessity of speed filtering in maintaining a first-order CFL time step restric-

tion. We solve the same problem as in Section 5.2 with Dx = Dy = 0.08, g = 0.1, WENO5, Poisson2, and no

speed filtering.

Without speed filtering, significant perturbations in the interface appear as early as t = 0.02, leading to

large oscillations in the curvature because the coefficient of the curvature is order one in comparison to the
other microphysical parameters. The large variations in curvature disturb the pressure solution and its gra-

dient near the interface, which creates further feedback to disturb the interface. In Fig. 8, we see that these

disturbances quickly grow to destabilize the entire simulation (solid curve). We show the same calculation

with speed filtering for comparison (dashed curve).
5.4. Impact of the new velocity extension technique

We tested the impact of the new bilinear velocity extension technique by solving the same problem as in
Section 5.2 with either the bilinear velocity extension or the traditional PDE-based velocity extension,

where one solves the PDE
eV s þ signðuÞn � reV ¼ 0 ð56Þ

to steady state. Here, eV ðs ¼ 0Þ equals the unextended velocity [37].



P. Macklin, J. Lowengrub / Journal of Computational Physics 203 (2005) 191–220 211
The results, shown in Fig. 9 at t = 2.50, demonstrate that the bilinear velocity extension (dashed) gives

results superior to those obtained with the PDE-based velocity extension (dash-dotted) when compared to

the boundary integral results (solid) from [7].
5.5. Impact of the curvature and normal vector modifications

To study the impact of our modifications to the curvature and normal vector, we solved the system (7)–

(9) again with the same setup as in Section 5.2. In Fig. 10, we show the position of the interface at t = 2.5,

2.75, and 2.77 with both the standard (top) and modified (bottom) curvature and normal vector algorithms.

Because our speed extension requires normal vectors that point away from the interface, we used the stand-

ard PDE-based extension (see [37]) for simulations with the standard curvature and normal vector routines.

In the results that use the standard discretizations, an artificial ‘‘repulsive’’ effect can be seen that prevents

approaching interfaces from merging until much later times when numerical error finally causes them to
merge. In Fig. 11, we plot the contours of the curvatures at t = 2.5 around the merging interfaces for both

algorithms. As we can see, the modified curvature (right) is smooth, whereas the standard curvature (left) is

oscillatory.
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Fig. 7. Comparison of computed solutions. We continue our WENO5-Poisson2 solution to additional times which the boundary

integral method cannot compute. Note that the spatial scale is different than in Fig. 6.



Fig. 8. Effect of filtering on overall stability and accuracy. Initially small perturbations have grown to grossly distort the shape of the

interface by t = 0.02. The dashed curve shows the solution at the same time with speed filtering.
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6. Numerical examples with necrotic effects

6.1. An example with symmetric initial data

To demonstrate the robustness of our technique, we next solve the system with necrosis. The initial inter-

face is given by (53) as before. Here, A = 0.0 (i.e., no apoptosis), G = 20.0, N = 0.35, and GN = 1.0. Again,

we use Dx = Dy = 0.08, r = 3Dx = 0.24, and g = 0.1. We use Poisson2 and WENO5 with our bilinear veloc-

ity extension method.

We begin by demonstrating the convergence of the overall numerical solution. As in Section 5.2, we
determine the order by considering ratios of the differences in the numerical solutions at three spatial res-

olutions (2Dx,Dx, and 1
2
Dx). The results, given in Table 6, clearly demonstrate the second-order accuracy of

the overall method, indicating that necrosis (and the associated discontinuities in the second derivatives of

the pressure) does not affect the result.

In Fig. 12, the morphologies of the growing tumor are shown. In this figure, we see that as the tumor

grows, healthy tissue is captured as morphological instability occurs, just as in the non-necrotic case (see

Figs. 6 and 7). This capture of healthy tissue is repeated, leading to a complex, lattice-like structure. A nec-

rotic core (indicated as a black region) first develops in the center of the tumor, splits, and also changes
morphology multiple times.
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Fig. 9. Comparison of the velocity extension techniques at t = 2.50 with Poisson2 and WENO5. The boundary integral solution is

given by the solid curve.
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In our implementation, c = 1 on the boundary of the captured regions. This mimics the vascularization

of the tumor from a third spatial dimension, thereby providing an source of nutrient internal to the tumor.
In addition, the velocity along the boundaries of the captured regions is determined from Darcy�s law,

where the pressure gradient is taken from the tumor side of the interface. This allows the captured regions

to grow or shrink depending upon the local tumor pressure gradient. For example, if the normal velocity is

negative, this mimics the pulling of healthy tissue from the third spatial dimension into the tumor interior.

This expansion could also be interpreted as mimicking the compressibility of the healthy tissue. (In the fu-

ture, we will modify these internal boundary conditions to be more realistic and allow nutrient to diffuse

into the captured healthy tissue instead, and we will and prescribe limits on the volume change of the cap-

tured regions.).
Observe in Fig. 12 that the necrotic core is roughly equidistant to the tumor/healthy tissue interfaces; the

distance is the (diffusion) length that the nutrient molecules diffuse before they are consumed by cells. Be-

yond this diffusion distance, the levels of nutrient are too low for cells to be viable.

Note that it would be very difficult to perform such a simulation with the boundary integral techniques

used in [7] due to the frequent morphological changes in both the tumor boundary and the necrotic core.

6.2. An example with asymmetric initial data

We give one final example with necrotic effects. We consider an asymmetric initial interface. We again

solve (7)–(9) with the initial interface as given in Fig. 13. Here, A = 0.5, G = 20.0, N = 0.5, and GN = 1.0. As

before, we use Dx = Dy = 0.08, r = 3Dx = 0.24, and g = 0.1. We use Poisson2 and WENO5 with the bilinear

velocity extension. We plot our solution in 1.00 time-unit increments in Fig. 13. An evolution analogous to

that seen in Figs. 6, 7 and 12 is observed. Because the necrotic parameter is larger in this simulation, the
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lattice-like structure observed in Figs. 7 and 12 is more pronounced. Notice that despite the initial asym-

metry, the lattice structure attains a level of regularity in its pattern. In addition, growth occurs through a
‘‘bump-by-bump’’ mechanism, where the tumor expands by the growth of small bumps that invade the

neighboring region. This growth mechanism has been recently observed by Frieboes et al. [10] in experi-

ments on tumor spheroids (see Fig. 14).
7. Conclusions and future work

In this paper, we developed a second-order accurate ghost fluid/level set algorithm for the evolution of

interfaces whose normal velocity is given by the normal derivatives of solutions to interior Poisson equa-

tions with curvature-dependent boundary conditions. The algorithm is capable of describing complex

morphologies including pinchoff and merger of interfaces. In particular, we developed a new Poisson solver

capable of capturing geometric boundary conditions on a complicated interface. We developed geometry-
aware discretizations of the normal vectors and curvature that automatically detect and cope with level set

irregularity, particularly during morphological changes. We also developed new gradient and velocity

extension techniques that take full advantage of the geometric information embedded in the level set func-

tion to obtain greater accuracy and faster computational speed than techniques currently in use. To main-



Fig. 11. Effect of the curvature and normal vector modifications on a tumor growth simulation. The left plot shows the curvature at

t = 2.5 using the standard algorithms (the black regions are where j 
 � 1e3; the right plot shows the curvature using our modified

algorithms at the same time).

Table 6

Full convergence results for necrotic, complex morphology

Time ‘band1 ðDx; 2DxÞ ‘band1 ðDx; 1
2
DxÞ Order

0.05 0.004290 0.001153 1.89

0.10 0.006469 0.001612 2.00

0.15 0.006852 0.001820 1.91

0.20 0.009999 0.002754 1.86

0.25 0.01360 0.003528 1.95

0.30 0.01804 0.004908 1.88
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tain stability, we applied Gaussian filter techniques often used in image processing to smooth the extended

velocity while preserving the overall accuracy.

We validated the algorithm by simulating a model for tumor growth and comparing the numerical re-

sults to exact solutions and to spectrally accurate boundary integral results. We provided numerical evi-

dence that our algorithm (i.e., WENO5 for the level set equation, Poisson2 for the interior Poisson

equations, linear interpolation to determine the interface position, cubic interpolation for the curvature

at the interface, bilinear velocity extension off the interface and Gaussian filtering for the normal velocity)

indeed achieves full second-order accuracy, even when the coefficient of the curvature is order one (with
respect to the other microphysical parameters). This is the first such demonstration we are aware of in

the context of a fully coupled, nonlinear moving boundary problem with geometric boundary conditions

(curvature).

We also went beyond the morphologies that can be described by the boundary integral method and pre-

sented accurate simulations of complex, evolving tumor morphologies that demonstrate the repeated
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Fig. 14. In vitro glioblastoma from Frieboes et al. [10] growing by the ‘‘bump-by-bump’’ mechanism.
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encapsulation of healthy tissue in the primary tumor domain– an effect seen in the growth of real tumors. In

future work, we plan to continue developing and simplifying our new normal vector, curvature, and gra-
dient extension routines. In addition, we will also develop implicit time integration schemes as an alterna-

tive means to remove the stiffness. We will apply and enhance the numerical techniques we have developed

to study the biophysics of tumor growth. In a future work, we will consider more realistic microphysical

parameters (i.e., A, G and GN) by allowing spatial and temporal variability in order to study the morpho-

logical response of the tumors to chemotherapy, tissue inhomogeneity, and genetic mutations with the basic

techniques developed here [23].
Acknowledgements

The authors gratefully thank Vittorio Cristini for discussions concerning this work. The authors also

thank the Network and Academic Computing Services (NACS) at the University of California at Irvine

(UCI) and the Minnesota Supercomputer Institute for generous computing resources. P. Macklin acknowl-

edges support from the the National Science Foundation (Graduate Research Fellowship) as well as the

Department of Mathematics and the Department of Biomedical Engineering at UCI. J. Lowengrub thanks

the National Science Foundation (mathematics division) for partial support. We gratefully thank the
mathematics and biomedical engineering departments for the use of computational resources funded by

a National Science Foundation SCREMS grant and the Whitaker Foundation.
Appendix A. Extrapolations for the Poisson solver

In Section 4.1, if R intersected [xi � 1,xi + 1], we discretized uxx at xi by replacing ui + 1 (or ui � 1) by an

extrapolated value ûi + 1 (or ûi � 1). For completeness, we give the extrapolations for these cases here.
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If xi < xR 6 xi + 1, then we extrapolate from interior and boundary data to replace ûi + 1 in the discreti-

zation of uxx at xi. Some possible discretizations include:

(1) Cubic extrapolation: If {xi � 3,xi � 2,xi � 1} � X as described in (15), then we extrapolate ûi + 1 from

ui � 3, ui � 2, ui � 1, and uR, where
uR ¼ uðxRÞ ¼ gðxRÞ ¼ gR: ðA:1Þ

(2) Quadratic extrapolation: If {xi � 2, xi � 1} � X, then we define uR = gR as before, and we extrapolate

ûi + 1 from ui � 2, ui � 1, and uR.
(3) Linear extrapolation: If xi � 1 2 X, then we define uR = gR as before, and we define a linear extrapola-

tion via
ûiþ1 ¼ ð1� hÞðui � ui�1Þ þ gR: ðA:2Þ
If xi � 1 6 xR < xi, then we extrapolate from interior and boundary data to replace ûi � 1 in the discreti-

zation of uxx at xi. Some possible discretizations include:

(1) Cubic extrapolation: If {xi + 3,xi + 2, xi + 1} � X, then we use cubic extrapolation from ui + 3, ui + 2,
ui + 1, and uR, where
uR ¼ uðxRÞ ¼ gðxRÞ ¼ gR: ðA:3Þ
(2) Quadratic extrapolation: If {xi + 2, xi + 1} � X, then we define uR = gR as before, and we extrapolate

ûi � 1 from uR, ui + 1, and ui + 2.

(3) Linear extrapolation: If xi + 1 2 X, then we define uR = gR as before, and our linear extrapolation of

ûi � 1 is
ûi�1 ¼ gR � hðuiþ1 � uiÞ: ðA:4Þ
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